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ABSTRACT

This thesis investigates the plausibility of implementing a multiple-input single-

output (MISO) synthetic aperture radar (SAR) system for space-time adaptive pro-

cessing (STAP) with a limited data rate requirement of a single receiver. A MISO-

SAR system could provide processing flexibility to radar systems such as the Gotcha

radar system developed at the Air Force Research Laboratory. Gotcha is an airborne

wide-beam multi-mode radar system used to cover a large area for surveillance. In

order to apply multiple algorithms to a large amount of data in real time, the data

is downlinked to a supercomputer on the ground. STAP is an adaptive filtering tech-

nique which can be used for improved detection of slow moving targets in the presence

of clutter. However, STAP is typically implemented using an array of receiving el-

ements, which significantly increases the data rate for downlinking to the ground.

While MISO systems are common in communications applications, it is not a com-

mon radar system design approach. The MISO system requires additional waveform

design considerations in order to obtain orthogonal transmit waveforms. However,

the MISO system provides the additional degrees of freedom needed to apply STAP

while maintaining a single receiver data rate.
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CHAPTER 1

MOTIVATION

Multiple-input single-output (MISO) systems are commonly used for communi-

cations applications. However, radar has traditionally employed single-input single-

output (SISO) and single-input multiple-output (SIMO) systems. Multiple-input

multiple-output (MIMO) radar has been researched more recently. The advantage

of a MISO radar system is the ability to obtain the additional angular information

obtained by SIMO radar systems, while keeping the received data rate as low as the

SISO radar system. The MISO system, similar to a MIMO system, requires the use

of orthogonal waveforms and additional processing of the phase history.

The multiple-input single-output system was motivated by the goals of the Gotcha

Radar Exploitation Program (GREP) developed at the Sensors Directorate of Air

Force Research Laboratory. The Gotcha program is a circular synthetic aperture

radar (C-SAR) which currently employs a SIMO system to image a large ground scene

of an urban environment from a 450 grazing angle [3]. The radar system collects phase

history data and processes the data digitally using a supercomputer on the ground in

real-time. The high data rate for a large scene size requires a single receiver system

in order to process in real-time using available down-link hardware. Besides imaging,

another goal of the system is to track moving targets. Currently, tracking moving

1



targets using change detection and path predictions algorithms is implemented . In

order to create a more robust tracking algorithm using STAP, this thesis will explore

the possibility of implementing a MISO-SAR system.
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CHAPTER 2

TECHNICAL BACKGROUND

This chapter describes standard synthetic aperture radar (SAR) and space-time

adaptive processing (STAP). The background information is intended to assist in the

understanding of the derivations and demonstrations in Chapter 3.

2.1 Synthetic Aperture Radar

Synthetic aperture radar (SAR) exploits the motion of a moving platform to create

a synthetic antenna array, which improves cross-range resolution. Compared to aerial

photographs, SAR imaging has the advantage of producing images in bad weather and

at night. A top-level block diagram illustrating the typical single-input single-output

SAR system model described in this section is shown in Figure 2.1.

2.1.1 Synthetic Aperture Radar Equations

Since the main goal of synthetic aperture radar is to produce high resolution im-

ages, the waveforms used are high bandwidth. As discussed in [7] and [8], the typical

SAR uses linear frequency modulation (LFM) waveforms and pulse compression.

The range resolution is

δR =
c

2BW
, (2.1)

3



Figure 2.1: Typical SAR System Model.

where BW is the bandwidth of the linear FM chirp.

The cross-range resolution of a real aperture radar is

δCR = 2R sin(
θAZ

2
) ≈ Rθ3dB, (2.2)

where θAZ is the 3dB beamwidth of the antenna in the azimuth plane. Since θAZ

is proportional to λ
DAZ

, where λ is the wavelength and DAZ is the dimension of the

antenna in the azimuth plane, the cross range resolution for SAR is

δCR ≈ Rλ

DAZ
. (2.3)

By taking advantage of the platform motion, as discussed in [7], the effective

antenna dimension in azimuth can be defined as

DSAR = vTa, (2.4)

where Ta is the integration time of the aperture. Therefore, the cross-range resolution

can be reduced to

δCR ≈ Rλ

vTa
. (2.5)
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The general rule for the possible cross-range resolution which can be achieved by SAR

with Ta =
RθAZ

v is

δCR =
DAZ

2
. (2.6)

The ability to substantially improve cross-range resolution is what makes SAR so

useful.

In order to illustrate typical SAR processing, a signal model will be discussed.

Let s(t) represent a complex-valued transmit waveform. Then rg(t) = σgs(t − ∆tg)

represents the received signal from the gth scatterer at a time delay of ∆tg with a

radar cross section (RCS) σg.

For a standard linear FM pulse waveform,

s(t) = exp{j2π(α
2
t+ fc)t}, −T

2
< t <

T

2
. (2.7)

where α is the chirp sweep rate, fc is the center frequency, and T is the pulse duration.

Therefore, the received signals from the gth scatterer at the two-way time delay,

∆tg, is defined as

rg(t) = σgs(t−∆tg) (2.8)

= σg exp{j2π(
α

2
(t−∆tg) + fc)(t−∆tg)}, ∆tg −

T

2
< t < ∆tg +

T

2
.(2.9)

For simplicity, the radar cross section is assumed to be a complex amplitude without

frequency or angle dependence for a point scatterer radiating isotropically.

Next, consider the sampled data forms of the transmit and received pulses for

sampling period Ts. For the transmit pulses

s[n] = s(nTs), n = −N

2
, ...,

N

2
, (2.10)

5



where the number of samples per transmitted pulse is

N = floor(
T

Ts
). (2.11)

Similarly, the number of samples per pulse on receive is given by

L =
tstop − tstart

Ts
=

(tfar + T/2)− (tnear − T/2)

Ts
, (2.12)

where tstart, tstop, tnear, and tfar are the time to start receiving returns from the

scene, the time to stop receiving returns from the scene, the two-way time delay to

near scene, and the two-way time delay to far scene, respectively, as illustrated in

Figure 2.2. Therefore, the receive indices are l = −L
2 , ...,

L
2 . For a change of variables

to let l be zero at scene center, let

t = nTs − T/2 = lTs + tstart, (2.13)

which yields receive samples

rg[l] = rg(lTs) = σgs(lTs −∆tg). (2.14)

The phase history over one slow time pulse, n, is a summation over all reflectors,

rn[l] =
G∑

g=0

rg[l]. (2.15)

where G is the number of point scatterers. The total phase history over all slow time

pulses will be saved as a matrix of column vectors

PH = [r1[l], r2[l], ..., rN [l]], (2.16)

where n=1, 2,...,N represent the slow time indices.

Assuming linear FM waveforms, pulse compression is used to produce a range

compressed phase history. This can be down using matched filtering or a technique

6
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Figure 2.2: Received chirps from one transmitted chirp.
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called stretch processing. The matched filter approach is intuitive, but requires faster

sampling than stretch processing,

r[l] = s∗[−n] ~ PH[n], (2.17)

where s∗ denotes the complex conjugate of s and ~ denotes convolution.

Stretch processing includes LFM de-ramping, which will be discussed for practical

implementation due to the decreased sampling frequency requirement. A de-ramp

reference signal is applied to the received signals as a matched filter. This reference

signal is denoted as

w[l] = s(lTs + tstart −∆tcenter), (2.18)

where ∆tcenter = 2Rcenter/c and Rcenter is the range to scene center. Note that this

reference signal is over the entire receive period for one slow time pulse. For a single

received pulse rg[l] = σgs(lTs + tstart −∆tg), the de-ramped receive signal is

dg[l] = rg[l]w
∗[l]. (2.19)

2.1.2 Backprojection

Backprojection is one imaging technique to form focused images from range com-

pressed phase history [4]. The range resolution for the imaging is achieved by pulse

compression across fast time as previously described in Equation 2.1. In order to

achieve the same resolution in cross-range, the platform motion is used to process the

returns across slow time pulses. Backprojection can be thought of as a method of

applying cross-range compression for producing an image.

The backprojection algorithm has been derived in [4] with example Matlab code

accompanying the paper for efficient understanding of the backprojection process.

8



2.2 Space-Time Adaptive Processing

Space-time adaptive processing (STAP) is the technique of simultaneously pro-

cessing the temporal and spatial characteristics of a signal. STAP is mostly used in

radar applications to improve moving target detection in the presence of clutter, and

even jammers. This chapter discusses the space-time adaptive processing method

for a standard SIMO array radar system as described in [10] and [7]. However, the

derivation has also been adapted for the more complicated MIMO system [2]. The

STAP derivation and the modifications to its application are relatively extensive. The

focus of this section is to provide sufficient background for the purposes of this the-

sis. A thorough explanation of the STAP algorithm can be found in the previously

mentioned references.

Although STAP can be implemented to counteract jamming, the main focus of this

discussion relates to the ability to to improve the detection of moving targets in the

presence of ground clutter. There have been several approaches to STAP researched

over the past couple decades [10]. This section will focus on the general form of STAP,

referred to as fully adaptive STAP. Fully adaptive STAP is typically impractical

for real-world implementation due to limited data and computational complexity

[10]. However, understanding fully adaptive STAP is crucial to the consideration of

modified STAP algorithms.

Figure 2.3 illustrates a coherent processing interval, similar to the representation

seen in [10] and [7]. One should note that M represents the number of elements and N

represents the number of pulses to avoid confusion with previous notation. The cube

shown here represents the data used in the STAP algorithm. The M rows represent

the M spatial antenna elements and the N columns represent the N slow time pulses

9



Figure 2.3: Coherent Processing Interval (CPI).

of the radar system. The third dimension represents the L range compressed fast

time bins. In the general STAP algorithm, the M elements are assumed to have

identical antenna parameters. The STAP algorithm considers each l = 1, ..., L range

slice separately. From Figure 2.3, each range slice consists of a M × N matrix. A

space-time data snapshot, denoted as Y , is a NM × 1 vector of a particular range

bin, l, formed by stacking the columns of the M × N matrix. The top-level STAP

algorithm described in this section is illustrated by Figure 2.4.
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Figure 2.4: Typical STAP System Model.
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Figure 2.5: Spatial geometry [10] .

2.2.1 Spatial Steering Vector

Spatial steering is achieved by using the M multiple phase centers. This discussion

is based on a SIMO system. One antenna is transmitting and a uniform linear array

of elements are receiving. For m = 0, 1, ...,M − 1 elements, the return of a single fast

time has a phase shift associated with the angle of arrival (AOA) as seen in Figure

2.5.
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The nth pulse snapshot of the CPI will be denoted as

yn(t) = A[exp{j2πfc(t−md cos θ sinφ/c) + Ψ0}]T , (2.20)

where Ψ is the arbitrary initial phase of the m = 0 element, d is the element spacing,

θ is the elevation angle, and φ is the azimuth angle. The amplitude, A, is ignored

throughout the rest of the derivation since the phase change is the only concern.

However, this amplitude is the component detected after the steering vectors are

applied. Note that this derivation is based on a constant frequency waveform design

and ignores bandwidth. The discrete returns are then defined as

y[n] = yn(t0) = [exp{j2πmd cos θ sinφ/λ}]T , (2.21)

where m = 0...M − 1.

By defining the spatial frequency as fs = d cos θ sinφ/λ, a spatial snapshot is then

defined across these M spatial channels as

yn = [yn[0], yn[1], ..., yn[M − 1]]T (2.22)

= [1, ej2πd cos θ sinφ/λ, ..., ej2π(M−1)d cos θ sinφ/λ]T (2.23)

= [1, ej2πfs , ..., ej2π(M−1)fs ]T . (2.24)

Therefore the spatial steering vector is denoted as

as(fs) = [1, ej2πfs , ..., ej2π(M−1)fs ]T (2.25)

or equivalently,

as(θ, φ) = [1, ej2πd cos θ sinφ/λ, ..., ej2π(M−1)d cos θ sinφ/λ]T (2.26)

as(θc) = [1, ej2πd cos θc/λ, ..., ej2π(M−1)d cos θc/λ]T , (2.27)

13



Figure 2.6: AOA denoted as θc [5].
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where cos θc = cos θ sinφ is the angle of arrival (AOA) as shown in Figure 2.6

The spatial steering vector is a basis vector of the discrete Fourier transform

(DFT).

2.2.2 Temporal Steering Vector

The temporal variation across slow time allows for Doppler processing of the phase

history. The Doppler shift is related to the AOA as follows

fd =
2v

λ
, (2.28)

where v is the radial velocity. The Doppler frequency can be normalized by the pulse

repetition frequency (PRF), fp and is denoted as

f̃d =
2vTp

λ
=

fd
fp
. (2.29)

Therefore, the temporal steering vector is typically defined as

at(f̃d) = [1, ej2πf̃d , ..., ej2π(N−1)f̃d ]T . (2.30)

The temporal steering vector is also a basis vector of the DFT.

2.2.3 Space-Time Steering Vector

In order to represent the temporal and spatial phases, the Kronecker product of

the M × 1 spatial steering vector and the N × 1 temporal steering vector is taken to

produce the MN × 1 space-time steering vector. The space-time steering vector is

defined as

as,t = at ⊗ as, (2.31)

where ⊗ represents the Kronecker matrix product. Therefore, the space-time steering

vector is the unit amplitude system response of a target with spatial frequency fs and

normalized Doppler f̃d.
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2.2.4 Noise, Clutter, and Jamming

The interference present in a radar system can be separated into three types;

noise, clutter, and jamming. Each of these forms of interference is represented by the

following covariance matrices, as described in [7] and [10].

The simple model of internal receiver noise is

Rn = σ2IMN, (2.32)

where σ2 is the noise power of the receiver.

Although not the focus of this thesis, the model typically used to represent jam-

ming signals is

RJ = IM ⊗MJ, (2.33)

where MJ is the spatial covariance of the jammer.

The focus of STAP in this thesis is to reduce clutter interference. The clutter

model derivation is very extensive and relies on several system and geometric vari-

ables. The clutter model, derived in [10], is

Rc = σ2
c

Nr∑

i=1

Nc∑

k=1

ζik(atikatik
H)⊗ (asikasik

H), (2.34)

where the ikth clutter patch is defined by azimuth φk, elevation θi, clutter-to-noise

ratio ζik, and expected clutter power σ2
c .

Therefore, the total interference is represented by

RI = Rn +RJ +Rc. (2.35)

As described in [10], the clutter ridge across normalized Doppler frequency and spatial

frequency is defined as

β =
2vaTp

d
, (2.36)
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where va is the velocity of the radar platform, d is the antenna separation, and Tp is

the pulse repetition interval.

2.2.5 STAP Filtering and Detection Theory Application

As described in [10],

Y = YI , H0 : No Target Present

Y = YI + σtas,t, H1 : Target Present,

where YI is the response due to any interference, αt is the unknown target amplitude

response, and as,t is the known unit amplitude system target response as derived

previously.

Since the system interference is present regardless of target presence and the target

presence is a shift of the data mean [10], the data will always have the covariance

matrix RI as defined previously.

Therefore, STAP processing is essentially matched filtering. The clutter and jam-

ming characteristics are unknown in a scene. Therefore, filtering must be adaptive to

cancel interference. The output of the matched filter bank is

z = wHy, (2.37)

where w is the filter weight vector, which is adaptive, and y is the space-time data

snapshot. For fully adaptive STAP, weight vectors are optimized to filter data from

specific Doppler frequency and angle cells individually. However, modifications of the

STAP algorithm can be implemented to provide a reduced order representation of the

weight vector. Modifications of the STAP algorithm can be found in [10].
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For a non-adaptive, beam-formed response,

w = as,t. (2.38)

Since the general form of the space-time steering vector is a basis vector for the

discrete Fourier transform, the non-adaptive response can be computed using a two-

dimensional fast Fourier transform (FFT) [5].

There are several versions of STAP training to determine adaptive weight vectors.

Common methods of adaptively computing the weight vectors include sample matrix

inversion (SMI), subspace projection, or subspace SMI [10]. However, the choice of

training approaches is dependent upon the system and will not be the focus of this

chapter.

As derived in [5] the optimum weight vector for the simplest SMI approach is

w = R̂−1
I as,t, (2.39)

where R̂I is the data covariance estimate achieved by the chosen training and esti-

mation method.

The weighted space-time outputs are tested against a threshold, as shown in Figure

2.7, to determine if a target is present. This is done for every range bin to detect

range, angle, and radial velocity of targets.

2.2.6 Minimum Detectable Velocity

Minimum detectable velocity (MDV) is a common performance metric of STAP

processing. MDV is determined by the minimum detectable Doppler (MDD), which

can be discerned from the interference, especially clutter. Since the stationary clutter
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Figure 2.7: High-level illustration of STAP.
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is centered at zero Doppler, the upper MDD and lower MDD are defined in [7] as

MDD+ = min
fd

{fd|LSIR ≥ L0, fd > 0}

MDD− = min
fd

{fd|LSIR ≥ L0, fd < 0}

where LSIR is the signal-to-interference ratio loss and L0 is the maximum acceptable

loss. These values are calculated for specific systems parameters using the radar range

equation.

MDD =
MDD+ −MDD−

2

MDV =
λ

2
(MDD)
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CHAPTER 3

MULTIPLE-INPUT SINGLE-OUTPUT SYSTEM
IMPLEMENTATION

The MISO system is an unconventional radar system design. This system has

some of the advantages of the SISO and SIMO systems but requires some of the ad-

ditional considerations of the MIMO system. By using a single receiver, the MISO

system can limit the received data rate. By using multiple transmitters, this system

gains a degree of freedom to implement spatial processing. Since this system de-

sign approach requires the use of orthogonal waveforms, several modifications to the

standard processing discussed in Chapter 2 must be made. In this chapter, several

waveform designs will be proposed, and the modifications to the backprojection and

STAP algorithms will be derived.

3.1 Waveform Design

The waveform design examples discussed in this section are illustrated using the

following Gotcha parameters [3].

fc = 9.6GHz

BW = 640MHz
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Figure 3.1: FDMA Scheme of LFM chirps.

αtotal = 2 ∗ 1013Hz/sec.

These waveforms are intuitive options to achieve orthogonality with LFM process-

ing. Future waveform design options are discussed in the Section 5.1.

3.1.1 FDMA

The frequency division multiple access (FDMA) scheme described in this section

is shown in Figure 3.1.
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A linear FM waveform is

s(t) = exp{j2π(α
2
t+ fc)t}, −T

2
< t <

T

2
(3.1)

FDMA over the bandwidth can be achieved for M transmit antennas, and each trans-

mitter is indexed by m,

m = −M − 1

2
, ...,−1, 0, 1, ...,

M − 1

2
. (3.2)

The center frequency of each transmit waveform is

fm = m
BW

M
. (3.3)

Therefore, the transmitted waveforms of the FDMA scheme are defined as

sm(t) = s(t) exp{j2πfmt}, −T

2
< t <

T

2
(3.4)

= exp{j2π(α
2
t+ fc + fm)t}, −T

2
< t <

T

2
, (3.5)

where,

α =
αtotal

M
(3.6)

T =
BW/M

α
(3.7)

The total bandwidth is

(fc −
BW

2
) < f < (fc +

BW

2
). (3.8)

The specific case of five transmitted signals for the Gotcha system is defined by:

m = −2,−1, 0, 1, 2

fm = m
640

5
MHz

α =
2 ∗ 1013

5
Hz/sec
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Figure 3.2: Frequency Wrapping Scheme of LFM chirps.

Therefore, (9600− 320)MHz < f < (9600 + 320)MHz.

For example, the transmitter indexed by m = −2 is a linear FM chirp that starts

at (9600 − 320) MHz and sweeps 640/5 = 128MHz. The chirp rate is α = 2∗1013
5

Hz/sec; therefore, the pulse duration is

T =
640/5 ∗ 106

2/5 ∗ 1013 = 32µsec
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3.1.2 Frequency Wrapping

The frequency wrapping scheme described in this section is shown in Figure 3.2.

This scheme follows a similar derivation as the FDMA scheme. However, each trans-

mit waveform wraps the entire bandwidth for this scheme. The desired waveforms

are of the form

sm(t) = exp{jθmod(t)}, −T

2
< t <

T

2
. (3.9)

where θmod has a starting frequency offset and wraps the full bandwidth for the pulse

duration. This means α = αtotal since we are not dividing the bandwidth between

the transmitters.

For FDMA, we defined each waveform as

sm(t) = exp{j2π(α
2
t+ fc + fm)t}, −T

2
< t <

T

2
(3.10)

= exp{jθ(t)}, −T

2
< t <

T

2
. (3.11)

where,

θ(t) = 2π(
α

2
t+ fm + fc)t (3.12)

f(t) =
1

2π

dθ(t)

dt
= αt+ fm + fc. (3.13)

Therefore,

θ(t) = 2π(f(t)− α

2
t)t. (3.14)

To wrap the chirps within the bandwidth using the modulo function we define:

fmod(t) = mod[(αt+ fm +
BW

2
), BW ]− BW

2
+ fc (3.15)

fmod(t) should range from (fc − BW
2 ) to (fc +

BW
2 ).
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Figure 3.3: Frequency Wrapping Scheme of LFM chirps with varied chirp sweep rates.

BW
2 is added and subtracted since the result of mod() is between 0 and BW .

θmod(t) = 2π(fmod(t)−
α

2
t)t (3.16)

= 2π(mod[(αt+ fm +
BW

2
), BW ]− BW

2
+ fc −

α

2
t)t (3.17)
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3.1.3 Varied Chirp Sweep Rates with Frequency Wrapping

The frequency wrapping scheme with varied chirp sweep rates described in this

section is shown in Figure 3.3. This scheme follows the same derivation as the stan-

dard frequency wrapping scheme discussed above, but uses varied chirp sweep rates

for the M transmit antennas. Therefore,

sm(t) = exp{jθmod(t)}, −T

2
< t <

T

2
, (3.18)

where,

θmod(t) = 2π(mod[(αmt+ fm +
BW

2
), BW ]− BW

2
+ fc −

αm

2
t)t (3.19)

and

αm = mα. (3.20)

3.2 Orthogonality of the MISO Waveform Schemes

The proposed waveform schemes have both benefits and drawbacks to be consid-

ered. This section discusses the considerations of each waveform scheme to be used

as orthogonal transmitting radar waveforms.

The auto-correlation and cross-talk of the waveform schemes are shown in the

following graphs. There is no cross-talk in the FDMA scheme, as seen in Figure

3.4, while the cross-talk of the frequency wrapping scheme appears significant at first

glance. This cross-talk, shown in Figure 3.5, is due to the fact that each waveform is a

time-shifted version of the another waveform. The autocorrelation of the varied chirp

sweep rate scheme results in multiple peaks, as shown in Figure 3.7, due to waveforms

repeating across the pulse duration. Since we are only interested in the cross-talk of

the waveforms over the stretch bandwidth, these undesired autocorrelation peaks and
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Figure 3.4: Auto-Correlation and Cross-Talk of the FDMA Scheme of LFM chirps.

cross-correlation peaks will be ignored when calculating the range compressed phase

history. However, this reduces the possible range extent of the scene. The auto-

correlation and cross-correlation peaks are overlaid to show the possible range swath

limitation in Figures 3.6 and 3.8. As shown, the frequency wrapped and varied sweep

rate waveform schemes limit the usable range swath by a factor of 1
M .

By observing the correlation of the three waveform schemes discussed here, some of

the limitations can be seen. The frequency wrapping scheme and the varied sweep rate
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Figure 3.5: Auto-Correlation and Cross-Talk of the Frequency Wrapping Scheme of LFM
chirps.
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Figure 3.6: Relevant Auto-Correlation and Cross-Talk of the Frequency Wrapping Scheme
of LFM chirps.
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Figure 3.7: Auto-Correlation and Cross-Talk of the Frequency Wrapping Scheme of LFM
chirps with varied chirp sweep rates.
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Figure 3.8: Relevant Auto-Correlation and Cross-Talk of the Frequency Wrapping Scheme
of LFM chirps with varied chirp sweep rates.
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Figure 3.9: Example MISO SAR System (for M=3 transmitting antennas).

scheme are both limited by the relationship between the range swath and number of

transmit antennas. The FDMA scheme has ideal autocorrelation and cross-correlation

characteristics; however, each waveform only spans a bandwidth of BW
M which limits

the resolution of the individual channels by 1
M .

3.3 MISO System SAR

MISO SAR uses a single receiver and multiple transmitters, as shown in Figure

3.9.

After choosing a waveform scheme, the discretized transmitted signals are de-

scribed as

sm[n] = sm(nTs) (3.21)

where Ts is the sampling period and m denotes the transmitting antenna. The number

of samples transmitted is N = floor( T
Ts
) and samples are indexed by n,

n = −N

2
, ...,

N

2
.
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Just as described in the previous chapter, the number of samples on receive is given

by L = tstop−tstart
Ts

= (tfar+T/2)−(tnear−T/2)
Ts

and samples are indexed by l,

l = −L

2
, ...,

L

2
.

A change of variables to let l be zero at scene center is applied for t = nTs − T/2 =

lTs + tstart.

rg,m[l] = rg,m(lTs) = σg,msm(lTs −∆tg,m) (3.22)

This is the received signal from the gth scatterer from the mth transmit waveform.

The phase history over one slow time pulse, l, is

r[l] =

M−1
2∑

m=−M−1
2

G∑

g=0

rg,m[l]. (3.23)

The total phase history over all slow time pulses will be saved as a matrix of column

vectors as shown below:

PH = [r1[l], r2[l], ..., rN [l]] (3.24)

where l=1, 2,...,L represent the slow time indices. The received signal is a coherent

sum of the received signals of the gth point scatterer due to each transmit antenna.

As described in Chapter 2, stretch processing can be performed for the MISO

system by using multiple reference signals to separate the received signal into the

orthogonal components of the M transmitters. This method was chosen for practical

implementation due to the decrease in bandwidth resulting in a decreased sampling

frequency requirement.

For each transmit antenna, a separate de-ramp reference signal is compared to

the received signals. This reference signal is denoted as

wm[l] = s∗m(lTs + tstart −∆tcenter,m), (3.25)
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where ∆tcenter,m = 2Rcenter,m/c. Note that this reference signal is over the entire

receive period for one slow time pulse and there will be M of them as opposed to the

single reference signal of the SISO or SIMO systems. For a received pulse from the

mth transmitter and gth scatterer, rg,m[l] = σgsm(lTs + tstart −∆tg,m), the de-ramped

receive signals are

dg,m[l] = rg,m[l]w
∗
m[l]. (3.26)

Using stretch processing, the phase history received from orthogonal waveforms

can be separated into the response of each transmit waveform. Therefore, the separate

responses can be processed as multiple spatial channels. Since the two-way travel time

for a point scatterer in the scene is identical for a MISO system and a SIMO system,

the separate response of each transmitter can now be considered a virtual receive

channel due to the reciprocity of the geometry.

3.3.1 MISO System Backprojection

Back projected images can be produced for each spatial channel. The frequency

wrapped and varied chirp sweep rate waveform schemes use the full bandwidth for

each waveform. Therefore, an image of the same range resolution of a SISO system

with the same bandwidth can be achieved with a single channel. The system model

for the frequency wrapped and varied sweep rate waveform schemes is shown in Figure

3.10 For the FDMA scheme, the bandwidth of each channel is only BW
M , where M is

the number of transmitting antennas. Therefore, the range resolution of each channel

is degraded. In order to produce a full resolution image, each channel image is

coherently added. FDMA MISO can be used to form an image with the same range
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Figure 3.10: MISO SAR Backprojection for frequency wrapped or varied sweep rates
waveforms (for M=3 transmitting antennas).

resolution as a SISO system with the same bandwidth. The process of achieving full

resolution images with FDMA waveforms is illustrated in Figure 3.11.

Only one of the channels is monostatic, while the remaining M-1 virtual channels

are actually bistatic. For some radar systems, bistatic backprojection may need to

be implemented. However, in the simulations described in this thesis, the monostatic

range line approximation is used because the antenna separation is orders of mag-

nitude smaller than the range to scene center. The geometry of the SAR geometry

used justifies the use of monostatic backprojection for image formation. The bistatic

range lines for the M transmitters and single receiver are shown from a bird’s eye

view of the system geometry in Figure 3.12. The simulation results discussed in this

thesis assume a 450 elevation angle and 8000 meter elevation above the ground. The

scene has a 100 meter radius about scene center. Therefore, R3 in Figure 3.12, the
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Figure 3.11: MISO SAR Backprojection for FDMA waveforms (for M=3 transmitting
antennas).

slant range between the receiver and far range, is

R3 =
√

(8000)2 + (8100)2 ≈ 11.385km. (3.27)

The antenna spacing of the simulation results is

d =
λ

2
=

c

2fc
≈ 0.0156m, (3.28)

where fc = 9.6 GHz. For bistatic backprojection, the two-way path length would need

to be taken into account. For example, the two-way path to far scene from the fifth

transmitter in Figure 3.12 is R5 + R3. Monostatic backprojection can be applied for

estimated range lines as shown in Figure 3.13. As shown in Table 3.1, the difference

in bistatic two-way path lengths and the monostatic two-way path lengths are very

small fractions of a wavelength. The time delay error associated with the two-way
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Figure 3.12: Bistatic Two-Way Paths (for M=5 transmitting antennas).

path length error, ∆R is

∆τ =
2∆R

c
, (3.29)

which is on the order of one hundred attoseconds (10−18). By producing images

with the monostatic antenna location, bistatic backprojection considerations can be

ignored.
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Figure 3.13: Monostatic Two-Way Paths (for M=5 transmitting antennas).

Table 3.1: Monostatic versus Bistatic Two-Way Path Lengths of the Simulated Geometry.

Bistatic Monostatic Two-Way Path ∆R as a
Two-Way Two-Way Length Error Fraction of

Path Length Path Length (nm), ∆R Wavelength, ∆R
λ

Transmitter 1 R1 +R3 2R1 21.442 6.8615 ∗ 10−7

Transmitter 2 R2 +R3 2R2 5.3587 1.7148 ∗ 10−7

Transmitter 3 2R3 2R3 = 2R3 0 0
Transmitter 4 R4 +R3 2R4 5.3587 1.7148 ∗ 10−7

Transmitter 5 R5 +R3 2R5 21.442 6.8615 ∗ 10−7
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Figure 3.14: Receiving Array Wavefronts (for M=5 receiving antennas).

3.4 MISO System STAP

The STAP steering vectors developed in [7] and [10] hold for the frequency wrapped

scheme and the varied chirp sweep rate scheme because the center frequency of each

waveform is the same and the spatial geometry is the reciprocal of the typical SIMO

system as shown in Figures 3.14 and 3.15. However, the FDMA scheme significantly

increases the computational complexity of the STAP implementation.

Top-level MISO STAP is illustrated in Figure 3.16. In this thesis, the adaptive

training method will not be discussed. The weight vector will be the space-time

steering vector.

As will be derived in this section, spatial and temporal beamforming are no longer

separable for FDMA waveforms. Therefore, the FDMA space-time steering vector

will be derived separately from the steering vectors used to implement the space-time
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Figure 3.15: Transmitting Array Wavefronts (for M=3 transmitting antennas).

steering vectors for the frequency wrapped waveforms and the varied chirp sweep rate

waveforms.

3.4.1 MISO STAP System Model

Since STAP focuses on moving targets, the Doppler frequencies for FDMA wave-

forms should be considered first. The Doppler of the target due to the wavelength of

the mth transmitter is

fd,m =
2v

λm
, (3.30)

where λm = c
fc+fm

and v is the radial velocity of the target. Following the traditional

STAP derivation in [10], with modified variables to avoid confusion with previous

equations, the received signal model from a single target with complex RCS σ for the

FDMA scheme is

r̃m(t) = σu(t− τm) exp{j2π(fc + fm + fd,m)(t− τm)} exp{jψ′}, (3.31)
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Figure 3.16: MISO STAP Diagram (for M=3 transmitting antennas).
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where u is the complex envelope, the transmitting antenna is indexed by m =

0, ...,M − 1, τm is the two-way time delay to the target from the mth transmit-

ter, fc is the center frequency of the full transmitting bandwidth, fm is the center

frequency offset of the mth transmitter, and ψ′ is the arbitrary initial phase of the

antennas. Note that the transmitting antennas are assumed to have synchronized ini-

tial phases. However, Section 3.5 will include the additional consideration of different

initial phase terms, ψ′
m, caused by unsynchronized transmitters in the MISO radar

system. This signal model differs from the SAR signal models for two reasons; the

target is assumed to be moving and the waveforms are assumed to be narrowband.

The narrowband assumption is part of the standard STAP model. Let τm = τ0 − τ ′m,

where τ0 is the two-way time delay for the reference antenna, m = 0, and τ ′m is the

difference in the two-way time delay between the reference transmitter and the mth

transmitter. Assuming the target is at a range Rt from the reference transmitter

m = 0, the two-way time delay of the target and the reference transmitter

τ0 =
2Rt

c
(3.32)

The relative delay for the mth transmitter is

τ ′m = −m
d

c
cos θ sinφ, (3.33)

where d, θ, and φ are the antenna separation, elevation angle, and azimuth angle,

respectively. By substituting this two-way time delay, the signal model becomes

r̃m(t) = σu(t− τm) exp{j2π(fc + fm + fd,m)(t− τ0 − τ ′m)} exp{jψ′} (3.34)

Define a spatial frequency, fs,m, of the mth transmitter from the spatial phase term

such that

exp{jm2πfs,m} = exp{−j2π(fc + fm)τ
′
m}. (3.35)
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Resulting in a spatial frequency,

fs,m = −(fc + fm)
τ ′m
m

(3.36)

= (fc + fm)
d

c
cos θ sinφ (3.37)

= d cos θ sinφ/λm. (3.38)

Therefore, the FDMA waveform scheme introduces an additional transmitter depen-

dence on the traditional spatial frequency and Doppler frequency that was not present

in the traditional SIMO STAP described in Chapter 2.

As described in [10], assume u(t − τm) ≈ u(t − τ0). This approximation is due

to the narrowband waveform assumption which implies that the relative time delay

is insignificant within the complex envelope. Additionally, τ ′m is assumed to be very

small (possibly on the order of picoseconds) and fd,m is typically relatively small

(possibly tens of Hz). Therefore,

fd,mτ
′
m ≈ 0. (3.39)

In order to separate the terms which vary in slow time or in the spatial domain from

the non-varying terms, let

exp{jψ} = exp{jψ′} exp{j2π(−fcτ0 − fd,mτ0)} (3.40)

The system model becomes

r̃m(t) = σ exp{jψ}u(t− τ0) exp{jm2πfs,m} exp{j2πfd,mt} exp{j2πfct}...

exp{j2π(fmt− fmτ0)}

= σ exp{jψ}u(t− τ0) exp{jm2πfs,m} exp{j2πfd,mt} exp{j2π(fc + fm)t}...

exp{−j2πfmτ0}.
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Down-conversion produces

rm(t) = r̃m(t) exp{−j2π(fc + fm)t}

= σ exp{jψ} exp{jm2πfs,m} exp{−j2πfmτ0}u(t− τ0) exp{j2πfd,mt}.

After matched filtering, the model is

xm(t) = σ exp{jψ} exp{jm2πfs,m} exp{−j2πfmτ0}...
N−1∑

n=0

exp{j2πnfd,mTp}X (t− τ0 − nTp, fd,mTp),

where Tp denotes the pulse repetition interval (PRI) and X (τ, f) is the waveform

ambiguity function defined in [10] as

X (τ, f) =

∫ ∞

−∞
up(β)u

∗
p(β − τ) exp{j2πfβ}dβ, (3.41)

where X (0, 0) = 1. Let tn = τ0 + nTp, where n = 0, ..., N − 1. Then, let xmn denote

xm(tn). The system model becomes

xmn = σ exp{jψ} exp{jm2πfs,m} exp{−j2πfmτ0}...

X (t− τ0 − nTp, fd,mTp) exp{j2πnfd,mTp}.

The next step, following the derivation of [10], is to assume that the time-bandwidth

product of the pulse waveform and the expected range of the target Doppler frequency

are such that the waveform is insensitive to the target Doppler shift. That means

X (0, f) ≈ 1. Let A = σ exp{jψ} denote the complex random amplitude of the model.

Then,

xmn = A exp{jm2πfs,m} exp{jn2πfd,mTp} exp{−j2πfmτ0} (3.42)

= A exp{jm2πfs,m} exp{jn2π(2v(fc + fm)/c)Tp} exp{−j2πfmτ0}.(3.43)
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Table 3.2: STAP Implications of the Proposed Waveform Schemes.
spatial Doppler range-dependent

frequency frequency phase ramp
traditional fs = d cos θ sinφ/λ fd =

2v
λ N/A

FDMA fs,m = d cos θ sinφ/λm fd,m = 2v
λm

exp{−j2πfmτ0}

Following a similar derivation, the typical STAP model for a MISO system with

a frequency wrapped waveform scheme or a varied chirp sweep rate scheme is

xmn = A exp{jm2πfs} exp{jn2πfdTp}, (3.44)

where fd =
2v
λ , fs = d cos θ sinφ/λ, and λ = c

fc
.

By comparing the two models, the implications of the FDMA waveform scheme

on the STAP model are listed in Table 3.2.

The spatial dependence, due to the different center frequencies of the M orthogonal

FDMA waveforms, of the Doppler term results in the inseparability of the spatial and

temporal components as opposed to typical STAP. The implications of the spatial

and Doppler frequency terms for FDMA waveforms will be discussed in the following

subsections.

The range dependent phase ramp due to the exp{−j2πfmτ0} term results in a

unique consideration not present in the traditional SIMO STAP. In order to examine

this term, let

fm = mf1, (3.45)

where f1 is the reference offset frequency between two adjacent transmitting antennas.

Note that for traditional STAP this phase ramp term is eliminated because f1 is zero.

This phase ramp term rotates the range constant angle of arrival (AOA) phase ramp
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Figure 3.17: Additive Range Dependent Phase Ramp for FDMA STAP.

of the M spatial channels across range slices. The period of this rotation can be seen

by letting

τ0 =
K

f1
, (3.46)

where K is any integer. Inserting Equation 3.45 and Equation 3.46 into the phase

ramp term, produces

exp{−j2πmK} (3.47)

Therefore, the phase ramp completes a full rotation of 2π with a period of 1
f1
. Let

Θ = mod(f1τ0, 2π). Then, exp{−j2πmf1τ0} = exp{−j2πmΘ}. As Rt increases,

τ0 increases, which also increases Θ. This phase ramp depends on m as shown in

Figure 3.17. For the simulated parameters discussed in this thesis, where M = 5,

f1 = 640
5 MHz = 128MHz. Therefore, the range dependent phase ramp has a period

47



of 1
f1

≈ 7.8nsec. In terms of range, since Rt =
cτ0
2 , the phase ramp completes a full

2π rotation approximately every 1.17 meters.

3.4.2 MISO System Spatial Steering Vector

As previously discussed, the concept of separable spatial and temporal steering

vectors does not apply to FDMA. However, the frequency wrapped waveforms and

varied chirp sweep rate waveforms produce the same spatial and temporal steering

vectors as discussed in the Chapter 2 due to the narrowband assumption of STAP.

The spatial steering vector is denoted as

as(fs) = [1, ej2πfs , ..., ej2π(M−1)fs ]T (3.48)

where fs = d cos θ sinφ/λ is the spatial frequency and d, θ, and φ are the antenna

separation, elevation angle, and azimuth angle, respectively. The spatial steering

vector is the exp{jm2πfs} term in the STAP model of Equation 3.44 .

For the frequency wrapped waveform and varied chirp sweep rate waveform schemes,

the center frequency of each antenna is the same, and the phase delay associated

with the wavefront is the same due to geometry reciprocity. Therefore, the frequency

wrapped waveform and varied chirp sweep rate schemes can be spatially beamformed

using the traditional spatial steering vector which is a basis vector of the discrete

Fourier transform (DFT).

For the FDMA scheme, the spatial steering needs to account for the different

center frequencies of each waveform. The wavelength variation cannot be factored

out independent of the angle of arrival, defined by θ and φ. Therefore, the spatial

steering of FDMA is no longer a basis vector of the DFT and will require the use

of a matched filter bank as well as correcting for the phase ramp described by the
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Figure 3.18: Range Dependence of FDMA Spatial Steering.

exp{−j2πfmτ0} term of Equation 3.42. The range dependence of FDMA STAP is

shown in Figures 3.18 and 3.19. For comparison, the typical STAP steering vector,

which is applied to the frequency wrapped and varied sweep rate MISO systems, is

shown as across range in Figures 3.20 and 3.21.
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Figure 3.19: Range Dependence of FDMA Spatial Steering (Top View).
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Figure 3.20: Typical Spatial Steering Across Range.
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Figure 3.21: Typical Spatial Steering Across Range (Top View).
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3.4.3 MISO System Temporal Steering Vector

As derived in the background chapter, the temporal steering vector is typically

denoted as

at(f̃d) = [1, ej2πf̃d , ..., ej2π(N−1)f̃d ]T (3.49)

where f̃d =
2vTp

λ = fd
fp

is the normalized Doppler frequency.

The frequency wrapped waveform and varied chirp sweep rate waveform schemes

can be temporally beamformed using the traditional temporal steering vector, which

is a basis vector of the DFT. The temporal steering vector is the exp{jn2πfdTp} term

in the STAP model of Equation 3.44 due to the narrowband assumption of STAP.

For the FDMA scheme, the a temporal steering vector would need to be altered

such that

at(fd) = [1, ej2πfd,mTp , ..., ej2π(N−1)fd,mTp ], (3.50)

where fd,m = 2v
λm

. However, the center frequency dependence of the Doppler fre-

quency would require a separate temporal steering vector for each spatial element

(m). Therefore, the temporal steering vector has spatial dependence and is no longer

a basis vector of the DFT. As mentioned previously, this negates the concept of sep-

arable steering vectors and separable spatial and temporal beamforming. Therefore,

the FDMA space-time beamforming will be performed using Equation 3.42 rather

than applying the concept of separable spatial and temporal steering.
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3.4.4 MISO System Space-Time Steering Vector

The space-time steering vector for the frequency wrapped waveform and varied

chirp sweep rate waveform schemes is the typical derivation discussed in the back-

ground chapter. This typical space-time steering vector is defined as

as,t = at ⊗ as, (3.51)

where ⊗ represents the Kronecker matrix product. Therefore, STAP processing can

be implemented using a two-dimensional DFT for the frequency wrapped waveform

and varied chirp sweep rate waveform schemes.

The center frequency dependence and additive range dependent phase ramp alters

the derivation for the FDMA waveforms. The traditional STAP steering vectors

assume separability of the spatial and temporal domains. Due to the additional

terms included in Equation 3.42, FDMA STAP can be applied using a matched filter

bank. The space-time steering vector is the model of the expected response of a target

at a certain angle of arrival (AOA) and Doppler frequency.

Since the wavelength associated with the center frequency of each spatial channel is

different, the space-time steering vector is defined to depend on radial target velocity

rather than Doppler frequency to avoid confusion.

The FDMA space-time steering vector is

as,t(fs,m, v) = [1, ..., ejm2πfs,mej2πfmτ0ejn2πTp2v(fc+fm)/c, ..., (3.52)

ej(M−1)2πfs,mej2πfmτ0ej(N−1)2πTp2v(fc+fm)/c]T . (3.53)

For space-time beamforming, the space-time steering vector is applied as matched

filter to each range slice separately. The output of the matched filter bank is

z = wHy, (3.54)
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where w = as,t is the filter weight vector, y is the received space-time data snapshot

vector for the chosen range slice, and {}H denotes the Hermitian transpose.

As a caution, the clutter covariance for FDMA will not follow the derivation

discussed in the background as described in [10]. The FDMA waveform scheme will

increase the clutter covariance rank by a factor of M as described in [1] and [6].

3.5 MISO System Simulation of the Gotcha Radar System

FDMAMISO SAR can be demonstrated using the 2006 Gotcha SAR Based GMTI

Challenge Problem data set supplied by the Sensors ATR Division of the Air Force

Research Laboratory [9]. This data set was collected using three receive phase centers

and one transmitter. In order to provide a manageable dataset, the range gating

described in Figure 3.22 was applied to produce 384 range bins across the 71 second

data set. The moving target of interest in the Gotcha data set is a Dodge Durango.

Since the Durango moves across range bins, the 384 range bins were chosen differently

for each slow time pulse to center around the Durango location. Range gating as a

function of time is shown in Figure 3.23. The motion of the Dodge Durango is graphed

in Figure 3.24.

The notional MISO radar system design using FDMA waveforms is shown in

Figure 3.25. The three transmit antennas are separated by a distance d, and the

response of each waveform is received at one receive antenna. The phase history

is range compressed using stretch processing with the three original transmit wave-

forms as reference signals. This will also separate the contribution of each transmit

waveform into three virtual receive channels. At this point in the process, the three

separate range compressed phase histories are equivalent to a SIMO system of the
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Figure 3.22: Gotcha Range Gating [9].

Figure 3.23: Gotcha Range Gating as a Function of Time [9].
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Figure 3.24: Speed and Position Relative to Start Position of Durango in Gotcha Data Set
[9].

same antenna spacing. The SAR imaging is then implemented by back-projecting the

three virtual receive channels over a chosen slow time dwell and coherently summing

them for the full resolution image of a SISO system of the same parameters. The

STAP is applied to the CPI of the M = 3 virtual receive channels for the chosen

number of slow time samples, N.

In order to apply these concepts to the real world Gotcha data set, the following

method, shown in Figure 3.26, was implemented to simulate the MISO radar sys-

tem using this SIMO system data. The three receiving antennas are separated by

a distance d. The bandwidth of the three receive channels are separated into the

three bandwidths which would have been separately transmitted in the MISO system

waveforms. The first bandwidth (approximately 9.28 GHz to 9.49 GHz) is used from

the first receive channel, the second bandwidth (approximately 9.49 GHz to 9.7 GHz)

is used from the second receive channel, and the third bandwidth (approximately 9.7
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Figure 3.25: Notional MISO Radar System Design.
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GHz to 9.92 GHz)is used from the third receive channel. After separating the band-

widths of the three receive signals, range compression is performed. At this point

in the process, the three receive channel outputs are equivalent to the three virtual

receive channel outputs of the FDMA MISO system. Therefore, the SAR image pro-

cessing and the STAP are implemented using the previously mentioned approaches.

However, this method of separating the frequency band of the received signal will

cause phase incoherence, which must be corrected in order to perform space-time

beamforming. The transmitted pulse of the SIMO Gotcha radar, with initial phase

ψ′ is

s(t) = exp{j2π(α
2
t2 + fct)} exp{jψ′}u(t), (3.55)

where

u(t) =
N∑

n=1

up(t− Tp), (3.56)

up(t) = rect(
t− T

2

T
), (3.57)

and Tp and T are the PRI and the pulse width, respectively. By selecting separate

bands of the received signal as described, the starting phase of each band cannot be

assumed to be identical, as was done for the simulated MISO data. The method of

selecting bands from each received pulse also applies a shift to the starting time of

the waveform. Since radar observes linear scattering, the transmitted frequency is

equal to the received frequency. Therefore, the effect of selecting frequency bands on

receive can be illustrated by observing the related transmitted waveforms. Assuming

the original transmitted pulse was separated into M FDMA waveforms, as shown in

Figure 3.27, the transmitted pulse of the mth transmitter is defined as

sm(t) = s(t)rect(
t− T

2M (2m+ 1)
T
M

) (3.58)
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Figure 3.26: Real Data Simulation of the MISO Radar System Design.
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Figure 3.27: Separation of Gotcha pulses for MISO FDMA Equivalency.

Figure 3.28: Rectangular Pulse Used to Define Bands of the Gotcha Chirp.

= s(t)rect(
Mt

T
− 1

2
(2m+ 1)), (3.59)

so that

s(t) =
M∑

m=0

sm(t) (3.60)

As shown in Figure 3.28, the leading edge of the rect(Mt
T − 1

2(2m+1)) function is at

t =
mT

M
. (3.61)

61



Let Tm denote the start time of the mth transmitter. Then,

Tm =
mT

M
. (3.62)

Since the pulse duration is related to the bandwidth and chirp sweep rate, such that

T = BW
α , the start time of the mth transmitter is

Tm =
mBW

Mα
. (3.63)

The starting phase of the mth transmitter, ψ′
m, is

2π(
α

2
T 2
m + fcTm) + ψ′ = ψ′

m. (3.64)

Define a change in phase relative to the starting phase of the reference transmitter,

ψ′, as

ψm = 2π(
α

2
T 2
m + fcTm), (3.65)

so that

ψ′
m = ψ′ + ψm. (3.66)

This time delay and phase delay must be accounted for when applying FDMA

MISO STAP to the Gotcha data. For the Gotcha data set, the starting time delay of

the mth virtual transmitted pulse is

Tm =
m(640 ∗ 106)
3(2.133 ∗ 1013) ≈ (1.0002 ∗ 10−5)m. (3.67)

The phase delay and start time delay of each of the three bands are displayed in Table

3.3.

After computing the phase delay and time delay for the Gotcha implementation,

the original FDMA STAP model described in Equation 3.68 will need to be changed
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Table 3.3: Representative Gotcha FDMA Considerations for STAP.
Start Time Delay Tm (µs) Phase Delay ψm

m = 0 0 0
m = 1 10.002 2π9.7082 ∗ 104 = 6.0998 ∗ 105
m = 2 20.003 2π1.9630 ∗ 105 = 1.2334 ∗ 106

for the Gotcha data set when modeling the FDMA MISO STAP. The received signal

model would be

r̃m(t) = σu(t− τm − Tm) exp{j2π(fc + fm + fd,m)(t− τm − Tm)} exp{jψ′
m}, (3.68)

where u is the complex envelope, the transmitting antenna is indexed by m =

0, ...,M − 1, τm is the two-way time delay to the target from the mth transmit-

ter, fc is the center frequency of the full transmitting bandwidth, fm is the center

frequency offset of the mth transmitter, Tm is the starting time delay associated with

the mth transmitter, and ψ′
m is the initial phase of the mth transmitter. Note that

the narrowband model is being considered, just as described in [10]. As derived in

Section 3.4.1, the τm = τ0 − τ ′m subsititution produces a signal model of

r̃m(t) = σu(t−τm−Tm) exp{j2π(fc+fm+fd,m)(t−τ0−τ ′m−Tm)} exp{jψ′
m} (3.69)

The spatial frequency, fs,m, of the mth transmitter from the spatial phase term will

still be defined such that

exp{jm2πfs,m} = exp{−j2π(fc + fm)τ
′
m}. (3.70)

Therefore, the spatial frequency is

fs,m = −(fc + fm)
τ ′m
m
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= (fc + fm)(
d

c
cos θ sinφ)

= d cos θ sinφ/λm

Assume u(t− τm − Tm) ≈ u(t− τ0 − Tm). This assumption is due to the narrowband

waveform model. The previous assumption, fd,mτ ′m ≈ 0, remains. In order to separate

the terms which vary in slow time or in the spatial domain from the non-varying terms,

let

exp{jψ} = exp{jψ′} exp{j2π(−fcτ0 − fd,mτ0} (3.71)

The system model becomes

r̃m(t) = σ exp{jψ} exp{jψm}u(t− τ0 − Tm) exp{jm2πfs,m}...

exp{j2πfd,mt} exp{j2π(fc + fm)t} exp{−j2πfmτ0}...

exp{−j2π(fc + fm + fd,m)Tm}.

Down-conversion produces

rm(t) = r̃m(t) exp{−j2π(fc + fm)t}exp{−jψm}

= σ exp{jψ}u(t− τ0) exp{jm2πfs,m} exp{j2πfd,mt}...

exp{−j2πfmτ0} exp{−j2π(fc + fm + fd,m)Tm}.

After matched filtering with the shifted complex envelope, u(t− τ0 − Tm), the model

is

xm(t) = σ exp{jψ} exp{jm2πfs,m} exp{−j2πfmτ0}...
N−1∑

n=0

exp{j2πnfd,mTp}X (t− τ0 − nTp, fd,mTp)

where Tp denotes the pulse repetition interval (PRI) and X (τ, f) is the waveform

ambiguity function. Just as described in Section 3.4.1 for the synchronized FDMA
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system, the slow time pulses are defined such that tn = τ0 + nTp. Then, let xmn

denote xm(tn). The system model becomes

xmn = σ exp{jψ} exp{jm2πfs,m} exp{−j2πfmτ0}...

X (t− τ0 − nTp, fd,mTp) exp{j2πnfd,mTp}.

Just as before, the time-bandwidth product of the pulse waveform and the expected

range of the target Doppler frequency are assumed to be such that the waveform is

insensitive to the target Doppler shift. That means X (0, f) ≈ 1. Let A = σ exp{jψ}

denote the complex random amplitude of the model. Then,

xmn = A exp{jm2πfs,m} exp{jn2πfd,mTp} exp{−j2πfmτ0}

= A exp{jm2πfs,m} exp{jn2π(2v(fc + fm)/c)Tp} exp{−j2πfmτ0}.

Therefore, the FDMA STAP model derived in Section 3.4.1 will apply to the MISO

FDMA Gotcha model without any additional phase offset terms.
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CHAPTER 4

MULTIPLE-INPUT SINGLE-OUTPUT SYSTEM
RESULTS

The concepts discussed in this thesis were simulated on ideal point scatterers and

real world Gotcha data using the method described in the Chapter 3. The results

produced by the simulation and using the Gotcha data are presented in this chapter.

4.1 MISO SAR

The FDMA simulation images are shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6,

where Figure 4.6 shows the coherent sum of the five channels. Range is along the

x-axes and cross-range is along the y-axes. As expected, the coherent sum has an

improved point spread in the range dimension due to increasing the total bandwidth.

The frequency wrapped and varied sweep rate waveform schemes produce the same

result without needing to coherently sum.

Using the Gotcha data set, the following images were produced. Figures 4.7, 4.8,

and 4.9 illustrate the low-resolution images produced by the three FDMA bands. In

order to produce these images, the phase histories collected at each receiver were

separated into three bands. The first band of the first channel produced Figure 4.7.

The second band of the second channel produced figure 4.8. The third band of the
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third channel produced figure 4.9. Due to the reciprocity of the geometry of a MISO

system and a SIMO system, this method simulates the same phase delay of the FDMA

MISO system. The coherently added image is shown in Figure 4.10. For comparison,

a full resolution image produced from channel 1 is shown in Figure 4.11

4.2 MISO STAP

The typical space-time beamforming, as described in [10], was implemented on

simulated data using the frequency wrapped waveform scheme. An example station-

ary target at 00 azimuth is shown in Figure 4.12. The axes are indexed to display

spatial frequency and Doppler frequency.

The matched filter approach for space-time beamforming with FDMA waveforms,

as described in the implementation chapter, was implemented using a FDMA MISO

simulation. The results for a stationary point scatterer at 00 azimuth are shown

in Figure 4.13. As shown through these simulations, the FDMA STAP produces

comparable results. However, it is no longer logical to plot results as a function of

normalized Doppler frequency since the Doppler shift is slightly different depending

on the transmitting frequency of each spatial channel. Therefore, the results are

shown as a function of spatial frequency and radial target velocity.

The response of a moving point scatterer with a radial slant plane velocity of 10

m/s toward the radar is also shown in Figure 4.14. Note that, as described by the

geometry in the background chapter, the radial velocity is the portion of the velocity

in the slant plane.

The response of a moving point scatterer located at approximately 50 meters

from scene center in the cross-range dimension with a radial slant plane velocity of
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10 m/s toward the radar is also shown in Figure 4.15. Note that, as described by the

geometry in the background chapter, the radial velocity is the portion of the velocity

in the slant plane.

For comparison, the traditional space-time beamforming was applied to the SIMO

Gotcha system data set to represent the expected detection. As shown in Figure

3.24, the Durango is moving at approximately 13 m/s around 40 seconds. Therefore,

beamforming was applied to the 40fp = 86864 starting pulse for 100 pulses. The

Durango is located in the center range bin as shown in Figure 3.23. The result of

traditional SIMO space-time beamforming is shown in Figure 4.16 as a function of

spatial frequency and normalized Doppler frequency. The moving target is labeled in

Figure 4.17 as a function of radial velocity and sine of azimuth angle relative to scene

center. The slant plane radial velocity of the target is approximately 9 m/s, which

corresponds to a ground plane target speed of approximately 12.8 m/s. The clutter

ridge slope can be calculated using Equation 2.36 and results in a slope of 0.1859.

The clutter ridge slope is shown in Figure 4.18.

The space-time beamforming derived for the FDMAMISO system was also applied

to the Gotcha data set to demonstrate the feasibility of STAP for this radar system

design. The results are shown in Figure 4.19. The CPI was formed as described in

the previous chapter. As shown, the results are similar, and the Durango is detected

at the same angle of arrival and radial target velocity.
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Figure 4.1: Back Projected Image for Chan-
nel 1 of the FDMA Simulation.

Figure 4.2: Back Projected Image for Chan-
nel 3 of the FDMA Simulation.

Figure 4.3: Back Projected Image for Chan-
nel 5 of the FDMA Simulation.

Figure 4.4: Back Projected Image for Chan-
nel 2 of the FDMA Simulation.

Figure 4.5: Back Projected Image for Chan-
nel 4 of the FDMA Simulation.

Figure 4.6: Coherently Summed Back Pro-
jected Image of the FDMA Simulation.
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Figure 4.7: Back Projected Image for Band 1 of the FDMA MISO Gotcha.

Figure 4.8: Back Projected Image for Band 2 of the FDMA MISO Gotcha.
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Figure 4.9: Back Projected Image for Band 3 of the FDMA MISO Gotcha.

Figure 4.10: Coherently Summed Back Pro-
jected Image of the FDMA MISO Gotcha.

Figure 4.11: Example Full Resolution Back
Projected Image of Gotcha Channel 1.
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Figure 4.12: Example Space-Time Beamforming of the Frequency Wrapped Waveform
Simulation (stationary point scatterer at 00 azimuth).
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Figure 4.13: Example Space-Time Beamforming of the FDMA Waveform Simulation (sta-
tionary point scatterer at 00 azimuth).
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Figure 4.14: Example Space-Time Beamforming of the FDMAWaveform Simulation (point
scatterer at 00 azimuth moving 10 m/s towards the radar).
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Figure 4.15: Example Space-Time Beamforming of the FDMAWaveform Simulation (point
scatterer at 0.350 azimuth moving 10 m/s towards the radar).
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Figure 4.16: Traditional SIMO Space-Time Beamforming of Gotcha MTI Data Set.
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Figure 4.17: Traditional SIMO Space-Time Beamforming of Gotcha MTI Data Set with
the Detected Target Marked.
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Figure 4.18: Traditional SIMO Space-Time Beamforming of Gotcha MTI Data Set with
the Slope of the Clutter Ridge Marked.
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Figure 4.19: Space-Time Beamforming of the Gotcha Data Simulation of the MISO Radar
System Design.
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CHAPTER 5

CONCLUSIONS

The MISO SAR system is a plausible system design for gaining spatial information

without increasing the volume of received data. The waveform design is crucial to

the success of this radar system, and the trade-offs must be carefully considered. The

trade-offs discussed in this thesis are presented in Table 5.1.

The FDMA scheme has ideal autocorrelation and cross-correlation characteristics.

Each FDMA waveform only spans a bandwidth of BW
M which limits the resolution by

1
M for STAP. However, the full resolution can be achieved for backprojection imaging

by coherently summing the M channels. The center frequencies are different for each

waveform, which complicates the STAP steering vectors. The frequency wrapping

scheme and the varied sweep rate scheme are both limited by the relationship between

the range swath and number of transmit antennas. For the frequency wrapping

scheme, the undesired cross-correlation peaks infringe on the orthogonality over the

scene size at Tp

M . For the varied sweep rate scheme, the undesired autocorrelation peaks

infringe on the orthogonality over the scene size at Tp

M . Therefore, the unambiguous

range swath is reduced by a factor of 1
M .

The traditional STAP derivation must be modified for FDMA waveforms and

the notion of separable spatial and temporal steering vectors is no longer applicable.
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Table 5.1: Considerations of the Proposed Waveform Schemes.

STAP Swath STAP Clutter
Resolution Size Implementation Covariance Rank

FDMA 1
M 1

√
MF Bank M

Wrapped 1
√ 1

M FFT
√

1
√

Varied Sweeps 1
√ 1

M FFT
√

1
√

Therefore, FDMA requires matched filtering against each angle of arrival and Doppler

frequency instead of using the two-dimensional FFT. However, if the accuracy of

Doppler frequency is able to be compromised to save on computational complexity,

the traditional space-time beamforming may still be preferable for FDMA with nearly

negligible wavelength offset between the spatial channels but the additional range

dependent phase ramp will need to be corrected for separately. However, using the

traditional FFT computational method for FDMA waveforms is a design choice which

will be affected by the percent bandwidth (BW
fc

) of the system. The higher the percent

bandwidth of the radar system, the less effective the traditional FFT approach will

be. For a system such as Gotcha, with a percent bandwidth of approximately 6.7%,

the FFT approach may still be a reasonable approach to choose.

5.1 Future Work

The plausibility of the MISO radar system for applying STAP without increasing

the number of receive channels leads to several areas of future interest. While the

example waveform schemes discussed in this thesis illustrate many of the processing

modifications to consider for a MISO radar system, other waveform schemes may
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lead to different considerations and result in preferable tradeoffs between imaging

and STAP target detection. Phase-coded code division multiple access (CDMA)

waveform designs would also be worthy of investigation. The adaptive weight vector

training method would also be a future area of interest. As mentioned in Chapter

3, the clutter covariance rank may also be a consideration in the training method

chosen for a MISO system. The clutter model of the FDMA system is worthy of

investigation. Additionally, the minimum detectable velocity (MDV) of the MISO

waveform schemes would also be useful for comparison purposes.
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