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ABSTRACT 

 

This paper examines the Linear Frequency Modulation (LFM) pulse compression 

technique on a generic signal model. Pulse compression allows achieving the 

performance of a shorter pulse using a longer pulse and hence gain of a large spectral 

bandwidth. The pulse compression technique plays a very important role for designing a 

radar system. Since a short pulse requires a high peak power which is unattainable for 

many constraints such as voltage breakdown, dimension of waveguide etc, the radar 

system uses a longer pulse and pulse compression technique. For high range resolution 

radar, the need for pulse compression is inevitable. The focus of this paper is time 

frequency autocorrelation and ambiguity functions’ role in waveform design and then 

application of LFM pulse compression technique to a generic signal waveform.  

 

Keywords: LFM, pulse compression, Time Frequency Autocorrelation Function 

(TFACF), Ambiguity Function (AF) 

 

1. INTRODUCTION 

 

One fundamental issue in designing a good radar system is it’s capability to resolve two 

small targets that are located at long range with very small separation between them.  

This requires a radar system to transmit a long pulse which will have enough energy to 

detect a small target at long range.  However, a long pulse degrades range resolution. 

Hence, frequency or phase modulation of the signal is used to achieve a high range 

resolution when a long pulse is required.  The capabilities of short-pulse and high range 

resolution radar are significant [1] p.342. For example, high range resolution allows 

resolving more than one target with good accuracy in range without using angle 

information. Many other applications of short-pulse and high range resolution radar are 

clutter reduction, glint reduction, multipath resolution, target classification, and Doppler 

tolerance.   
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There are several methods of pulse compression that have been used in the past. The most 

popular of them is linear frequency modulation (LFM) which was invented by R.H. 

Dickie in 1945 [1]. The other pulse compression techniques are Binary phase codes, 

Polyphase codes, Barker codes, Costas codes, Nonlinear Frequency Modulation etc. In 

this research, we developed Matlab code to study a generic ambiguity function waveform 

model and the LFM pulse compression technique with chirp diversity. All results in this 

paper correspond to the simulation parameters found in Table 1 unless otherwise noted. 

We verified expected results for an LFM transmit waveform from the ambiguity surface 

plots with the EENG 668 course notes p.69, figure 20. This paper has been organized in 

the following manner: time frequency autocorrelation and ambiguity functions’ role in 

waveform design, expected result for an uncompressed transmitted waveform, LFM pulse 

compression technique, result of LFM pulse compression technique, Doppler tolerance 

issue of LFM signal, and finally aliasing issues. 

 

Table 1: Simulation parameters for model verification. 

Parameter Value 

PRI rT  3 

Pulse Width   1 

Number of Pulses M 1 and 2 

Number of Chips P 1 

Number of Chip Points 8 

Continuous Amplitude Weighting a(t) a(t)=1 

Discrete Amplitude Weighting Wmp Wmp =1 

 

 

2. TIME-FREQUENCY AUTOCORRELATION AND AMBIGUITY 

FUNCTIONS’ ROLE IN WAVEFORM DESIGN 

 

Suppose a signal  tS  is transmitted from a radar system. If there is no range delay or 

frequency shift, the matched filter output of the received signal will be exactly the same 

as the transmitted signal. However, in a practical radar system there is always range delay 

and /or Doppler shift. Therefore analysis must be done for the case when there is received 

signal mismatch with the transmit signal. The time-frequency autocorrelation function 

describes matched filter output when the transmit signal does not match with the received 

signal in either Doppler or time delay. From the EENG 668 course notes (pp. 13-15), the 

following equations mathematically describe the matched filter output, TFACF, and AF: 
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In (1) – (3),  )(tr  is received signal, )(* ts  is the matched filter impulse response, RT  is 

range delay, df is Doppler frequency shift. 

 

If we evaluate AF at )0,0(),( dR fT , we will find that the matched filter output is 

perfectly matched with received signal. If we evaluate AF where ),( dR fT is nonzero, we 

will get the matched filter output of a received signal with range delay and/or Doppler 

shift.  

3. EXPECTED RESULTS FOR AN UNCOMPRESSED TRANSMIT 

WAVEFORM 

 

If we plot the ambiguity function of a single pulse of an uncompressed waveform, it will 

look like a ridge. The result of the simulation is shown below: 

 



 4 

 
 

Figure 1: Ambiguity surface with Matlab’s surf command 

Pulse width [-0.875   0.875] and Frequency [-4  4] 
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Figure 2: Ambiguity Surface cut along Time Delay (sec) 

Figure 3: Ambiguity surface using Matlab’s pcolor command 
    



 6 

         
 

Figure 4: Ambiguity surface with Matlab’contour command 

 

 

      
Figure 5: Ambiguity Function surface cut when 0RT . 

This has been derived from magnitude square of TFACF 
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Figure 6: Ambiguity Function surface cut when 0RT . 

This has been derived from absolute value of TFACF 

 

 

When 0df , equation (2) becomes      dtts
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If we plot the above equation, we observe the triangular function on the time axis. 

 

 

                
Figure 7: Ambiguity Function surface cut when 0df . 

This has been derived from magnitude square of TFACF 
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Figure 8: Ambiguity Function surface cut when 0df . 

This has been derived from absolute value of TFACF 

 

 

      
Figure 9: Normalized Ambiguity Function surface cut when 0RT . 

From the definition, AF is calculated by taking magnitude square of TFACF. 

 

 

 

 

 

 

 



 9 

4. LFM PULSE COMPRESSION TECHNIQUE 

 

An LFM signal is a kind of signal in which the frequency of the transmitted signal is 

varied over a pulse duration of TP. This variation of the frequency from low to high or 

vice a versa is known as “chirping”.  Changing the frequency from low to high is called 

“up-chirp” or upsweep [3]. Similarly, changing the frequency from high to low is called 

called “down-chirp”. The technique of applying a different chirp rate for each pulse is 

known as “chirp diversity”., Following is a brief mathematical description of an LFM 

signal derived from EENG 668 course notes and Sumekh’s text book [3].  

 

Consider for the transmitted frequency of 0f  and chirp slope b , the phase function 

is 2)( 0 bttft  . By taking the derivative of the phase function, instantaneous 

frequency can be calculated as btft
i

2)( 0  .  For a chirp pulse width t[0, TP], 

0)0( f
i

  is the minimum frequency and i (TP) = bf 20  TP, is the maximum 

frequency.  Therefore, bandwidth of the chirp pulse is, i (TP) - i (0) = b2 TP. 

 

Following is a mathematical description of single pulse LFM, using a unit pulse function 

u(t) of width TP derived from the EENG 668 course notes. 
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Figure 10: LFM Signal Phase function with            Figure 11: LFM signal instantaneous function 

16,160  bf                                                           with 16,160  bf  
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5. RESULT OF LFM PULSE COMPRESSION TECHNIQUE 

 

 

Figure 12 and 13 shows ambiguity surface of an LFM pulse compressed signal.  

 
 

Figure 12: Ambiguity surface with Matlab’s surf command. Transmitted frequency 

f0=-16 Hz, chirp slope b=16, Number of Pulse M=1,  

Number of Chip Points NCps=64 
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Figure 13: Ambiguity surface with Matlab’s pcolor command. Transmitted 

frequency f0=-16 Hz, chirp slope b=16, Number of Pulse M=1,  

Number of Chip Points NCps=64 
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Figure 14 and 15 shows ambiguity surface of an LFM pulse compressed signal with chirp 

diversity.  

 

 
 

Figure 14: Ambiguity surface with Matlab’s surf command. Transmitted 

frequencies f0 = [-16, 16] Hz, chirp slope b= [16, -16],  Number of Pulses M=2,  

Number of Chip Points NCps=64 
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Figure 15: Ambiguity surface with Matlab’s pcolor command. Transmitted 

frequencies f0= [-16, 16]Hz, chirp slope b=[16, -16], Number of Pulses M=2,  

Number of Chip Points NCps=64 
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Figure 16 and 17 shows ambiguity surface of an LFM pulse compressed signal with an 

increasing number of chip points (NCps=256) 

 

 

 
Figure 16: Ambiguity surface with Matlab’s surf command. Transmitted frequency 

f0=-64Hz, chirp slope b=64, Number of Pulse M=1,  

Number of Chip Points NCps=256 
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Figure 17: Ambiguity surface with Matlab’s pcolor command. Transmitted 

frequency f0=-64Hz, chirp slope b=64, Number of Pulse M=1,  

Number of Chip Points NCps=256 

 

 

 

6. RANGE RESOLUTION OF COMPRESSED (LFM) AND UNCOMPRESSED 

WAVEFORM 

 

Consider an LFM waveform with bandwidth B = 0.5GHz and pulse width  = 10ms. 

The range resolution of an uncompressed waveform is given by, 
2

c
Runcomp   where c is 

the speed of light and   is the pulse width. To calculate the compressed range resolution, 

we need to calculate the compressed pulse width comp  which is calculated as
B
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For B=1GHz, cmmeterRcomp 1515.0  . 

The Pulse Compression Ratio (PCR) is defined as B
B





)/1(

.  Therefore, as bandwidth 

B of a radar system is increased, and PCR is also increased, then a better range resolution 

could be achieved. 

 

 

7. DOPPLER TOLERANCE OF THE LFM SIGNAL 

 

Skolnik [1] p.335 describes Doppler tolerance as a measure of whether or not a single 

matched filter will be enough to produce a good output when there will be a case of large 

Doppler shift. Short pulses are Doppler tolerant; on the other hand, long pulses are not 

Doppler tolerant. Therefore a pulse compression technique should alleviate Doppler 

tolerant issue associated with the longer pulse and hence the LFM signal should be 

Doppler tolerant.  However, there is a range-Doppler coupling issue inherent to LFM 

signal [1]. A range-Doppler coupling occurs due to a large Doppler shift. So the 

computed range may not be the true range of the target.  Therefore, depending on the 

application and situation, an LFM signal may or may not be Doppler tolerant.  In many 

applications, if the Doppler shift is small, range error is also small and hence this error 

could be ignored. To mitigate the range-Doppler coupling, chirp diverse LFM is used. 

 

 

8. ALIASING ISSUE 

 

In this simulation, we have to aware of the aliasing issues. Consider the uncompressed 

signal when 0RT . In this case equation (2) becomes 

      dt
tfj

etsts
d
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d

f d2*)(,0,0 

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If we plot the above equation, we observe the sinc function on the frequency axis. 
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Figure 18: Aliasing effects. For TR=0 cut, we see the analytical and simulation 

values for the ambiguity surface. Aliasing is evident in the simulated result since 

sidelobes do not decrease below a certain level. 

 

To alleviate this problem, we increase number of chip points. However, this creates 

computational burden. For a large number of chip points, this issue will be significant. 

 

 

 
Figure 19: Aliasing artifacts due to sampling issue 
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Figure 20:  No aliasing after increasing chip points 

 

 

10. CONCLUSION 

 

In this paper, time frequency autocorrelation and ambiguity functions’ role in waveform 

design has been discussed. TFACF and AF are very useful for radar designers for 

studying mathematical structure of different waveforms. They describe how different 

waveforms are useful for different applications. For example, to realize range Doppler 

resolution for a particular waveform, we need to know the ambiguity function. Also, to 

study the range-Doppler coupling of LFM signal, we study the ambiguity function. 

Finally, the LFM pulse compression technique, high range resolution from LFM pulse 

compression, range-Doppler coupling, and aliasing issue associated with sampling has 

been addressed. 
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MATLAB CODE 

 
 

clc; clear all 

M= 1; % Number of Pulses: PRI/Waves 

P =1; % Number of Chips within a Single Pulse 

Tc = 1; % Chip Time: Chip/Second 

NCps = 8; % Number of Chip Points: Samples/Chip 

 

tau = P*Tc; 

Tr =3; %Second/PRI 

S=NCps*Tc*Tr*M; % Samples/Chip * Chip/Sec * Sec/PRI * 

PRI/Wave = Samples/Wave 

 

Psi_mp=zeros(M,P); % Phase weighting for each chip 

Am=ones(1,M); %Continuous time weighting for each pulse 

(inter-pulse weighting) 

Wmp=ones(M,P); %Amplitude weight for each chip (intra- and 

inter-pulse weighting) 

Uc=ones(1,NCps); 

Samp_sec=NCps/Tc; % Sample/second 

 

for m=1:M 

    pulse=[]; 

    for p=1:P 

        Chip=Uc*Wmp(m,p)*exp(j*Psi_mp(m,p)); 

        pulse=[pulse Chip]; 

    end; 

    pulse=pulse.*Am(m); 

    indx=[(m-1)*Tr]*Samp_sec+1; 

    S(indx:(indx+P*NCps-1))=pulse; 

end 

 

mf=xcorr(S,conj(S)); 

%plot(abs(mf)); 

T=[0:(length(S)-1)]/Samp_sec; 

f=linspace(-Samp_sec/2, Samp_sec/2, length(S)+1); 

% Following line Checks aliasing issues 

%f=linspace(-2*Samp_sec, 2*Samp_sec, length(S)+1); 

TFACF=[]; 

tic 

for ff=f; 

    XC=xcorr(S.*exp(j*2*pi*ff*T),conj(S)); 

    TFACF=[TFACF XC.']; 

end 

toc 
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AF = (abs(TFACF)).^2; 

abs_AF=(abs(TFACF)); 

 

surf(f,[-T(end:-1:2) T],AF);  

xlabel('Doppler Mismatch(Hz)'); 

ylabel('Time Delay (s)'); 

zlabel('AF response'); 

 

figure(2); 

pcolor(f,[-T(end:-1:2) T],AF); shading interp 

xlabel('Doppler Mismatch(Hz)'); 

ylabel('Time Mismatch (s)'); 

colorbar 

figure(3) 

contour(f,[-T(end:-1:2) T],AF); 

xlabel('Doppler Mismatch(Hz)'); 

ylabel('Time Mismatch (s)'); 

grid on 

% figure(4) 

%  plot([-T(end:-1:2) T],abs_AF(:,33)); 

%  xlabel('Time Delay (s)'); 

%  ylabel('TFACF response'); 

%  title('abs(TFACF) when fd=0'); 

% grid 

% figure(5) 

%  plot(f,abs_AF(8,:)); 

%  xlabel('Doppler Mismatch(Hz)'); 

%  ylabel('TFACF response'); 

%  title('abs(TFACF) when TR=0'); 

%   grid 

%   figure(6) 

%  plot([-T(end:-1:2) T],AF(:,33)); 

%  xlabel('Time Delay (s)'); 

%  ylabel('AF response'); 

%  title('AF when fd=0'); 

% grid 

% figure(7) 

%  plot(f,AF(8,:)); 

%  xlabel('Doppler Mismatch(Hz)'); 

%  ylabel('AF response'); 

%  title('AF when TR=0'); 

%   grid 

 

 

 

 


